MLCC 用微粒子材料の製造法 ~粉砕分級および高周波熱プラズマ~

Manufacturing Process of Fine Particles for MLCC \sim Grinding & Classification System and RF Plasma \sim

 江間秋彦 日清エンジニアリング(株) 上福岡事業所 テクニカルセンター 担当主任 〒356-0045 埼玉県ふじみ野市鶴ヶ岡 5-3-77, Tel 049-264-3148, Fax 049-269-6850
 E-mail: emaa@mail.ni-net.co.jp, H.P.: http://www.nisshineng.com

1 はじめに

近年の電子機器業界における各種部材の高品質化, 高機能化のニーズはますます高まっており,その原材料 となる粉体に対する要求仕様も年々厳しくなっている。 より均一に,より小さく,コンタミネーションレスの粉 体を効率よく製造できる技術が望まれている。当社では, このような高度なニーズに応える粉体技術を微粒子制御 技術と位置づけ商品開発を進めている。本稿では,その 代表的な例として当社が開発した粉砕分級および高周波 熱プラズマを用いた微粒子製造技術を取り上げ,MLCC 用材料製造の観点から紹介する。

2 粉砕分級による MLCC 用材料の製造

粉砕分級法による微粒子の製造は,MLCC 用材料を 含めて様々な分野で用いられている。本製法の特徴はブ レークダウン法であり,比較的安価で大量の処理に向い ている。近年では装置の性能向上に伴い,サブミクロン オーダーの微粒子製造にも用いられることがある。特に サブミクロンオーダーの微粒子製造では,原料や製品粉 体の付着性や凝集性が強くなり,原料供給機におけるブ リッジや圧密による排出不良,装置内部や排出経路への 付着が生じやすくなり,連続運転が難しくなる場合が多 い。しかしながら,先端技術を組み合わせ,粉砕分級シ ステム全体の条件設定を最適化することで,工業運転が 可能になっている。

なお、電子部品をはじめとするあらゆる製品のダウ ンサイジング化に伴い、それらに使用される原料粉末に 対する微粉化要求が強くなっており、粉砕分級法のみで 要求に応えられるナノ領域の粉体製品を得ることは原理 的に困難なことが多くなっている。その際には、後述す る高周波熱プラズマ法などのビルドアップ法により製品 微粒子を得る方法を用いることとなる。

2.1 製造装置および粉砕分級システム

(1) 粉砕機

機械式粉砕機では、特殊な刃形状を有するローター を高速回転させ、固定刃であるライナーとの狭い隙間に 高速渦流を発生させる。この隙間に原料粉体を通過させ ると、粒子は高速渦流によって粉砕される。ローターの 形状によって「ブレードミル」と「スーパーローター」 の2機種がある。ブレードミルは繊維質状粉体や弾性 粉体の粉砕に適しており、スーパーローターは粒度分布 のシャープな微粉体を得る場合に用いられる¹⁾。

気流式粉砕機では,高圧空気の高速気流のみを利用し て粒子同士や壁面との衝突によって粉砕する。本粉砕機 は,回転体などの駆動部品をもたず,主に粒子同士や壁 面への衝突を原理とするので粒子へのコンタミネーショ ンが少なく抑えられる。また,圧縮空気の断熱膨張のた め発熱が少ない。ジェットミルの多くは、平均粒子径を 小さくできるが、同時に粗大粒子も存在するためブロー ドな粒度分布となってしまう。これを避けるため、日清 エンジニアリング(株)で開発された気流式粉砕機「スー パージェットミル」では、装置内が粉砕ゾーンと分級ゾー ンの2つの領域に分かれており、微粉のみが排出され るよう工夫されている²⁾。図1にスーパージェットミル の概略図を示す。装置本体の構造がシンプルなため洗浄 性に優れ、多品種製造用途などに適している。

さらに、後述のリングノズル式分散器を利用しても 十分な分散性能が得られない場合には、気流式粉砕機 を分散器として用いることもある。接粉部の材質はステ ンレス SUS304 が標準であるが、Al₂O₃、SiAION、SiC, ZrO₂等の耐摩耗性の高いセラミックス材料でも製作可 能である。

(2) 分級機

空気分級機「ターボクラシファイア」は、遠心力場 にある粒子に反対方向の空気抗力を与えることによって 粒子を大小に分ける遠心風力分級機である。図2にター ボクラシファイアの断面図を示す。粉体投入口から供給 された粉体は分散羽根によって分散され、分級ゾーンへ 移動する。ここで粒子は高速回転する分級ローターによ る遠心力とブロワーによる気流の抗力を受け,遠心力が 大きく働く大粒子は粗粉側に移動し,空気抗力が大きく 働く小粒子は微粉側に移動し分級される。遠心力はロー ター回転数を,空気の抗力は吸引風量を変えることに よって容易に調整することができる。摩耗性粉体や付着 性粉体にも対応できるよう材質の異なったローターを各 種用意している。

(3) 分散器

分級処理を行う上で原料の分散状態は分級効率に大 きく影響する。数ミクロン以下の微粒子になると凝集性 が非常に強くなるため強制的な分散操作が必要となって くる。凝集の原因である粒子間力としては,液架橋力, ファンデルワールス力,静電気力などが知られており, 各種の対策が考えられる。しかしながら,一般的には物 理的な分散力を用いた粉砕や解砕といった強制的な分散 手法を用いることが多い。図3に高速空気流を利用し たリングノズル式分散器の断面構造を示す。ノズル間を 通過する高速気流に粉体を投入し,粒子間衝突,せん断 あるいは壁面衝突によって凝集粒子を分散させる。実際 に,分散器を用いることで分級精度の指針である部分分

(b) メカニズム

図1 スーパージェットミルの構造と粉砕メカニズム

図2 ターボクラシファイアの構造と分級メカニズム

図3 分散器の構造

級効率のκの値が大きくなり,高精度な分級ができたとの報告がある³⁾。さらに,分散器は微粉体の散布用途に 用いることもできる。 (4) 粉砕分級システム

① 開回路粉砕分級システム

粉砕機・分級機を通過させて分級後の粗粉と分級後 の微粉を回収するシステムで,主に以下の場合に用いら れる。

- 1) 粉砕機を複数回通過させても1パス以上の粉砕効果 が期待できない場合。
- 2)分級処理における強力な分散器として粉砕機を利用 する場合。

前者は金属粉体などに多く,後者は付着凝集性の大 きなサブミクロン粒子の分級処理などに利用される。

② 閉回路粉砕分級システム

粉砕機・分級機を通過させて分級後の粗粉を再度, 粉砕機へ供給するシステムで,分級後の微粉のみがシス テムから回収される。主に以下の場合に用いられる。

1) 粉砕機を複数回通過させることにより,希望の粒径 にできるもの。

MLCCの薄膜多層化に向けた誘電体・電極の材料調整と塗布・解析

2) 1 次粒子径が十分細かい凝集体原料(2 次凝集粒子)の解砕。

前者はトナーなどの樹脂粉体などに多く,後者はサ ブミクロン粒子の2次凝集粉体の完全解砕などに用い られる。

(5) 不活性ガス下での粉砕分級

粉砕機や分級機は,通常は大気中で使用されるが, 以下のような粉体を処理する場合は,不活性ガス下での 粉砕分級処理が必要である。

- 1)吸湿性の粉体であり、空気中の処理では吸湿して機 内への付着・凝集が激しい。
- 2) 微粉のため活性が高く,容易に酸化して品質上の問 題となる。
- 3)爆発性の粉体であり空気中での処理ができない。

冬場の低湿度における運転は問題ないが,夏期の多 湿下の処理では凝集や付着が生じ,製品収率の低下や酸 化が問題となる粉体を分級する場合,不活性ガス循環式 分級処理は有効である。循環による系内の温度上昇を避 けるため冷却装置を設置され,システム全体がシール性 を配慮した構造になっている。また,循環式であるため N₂等の不活性ガスの使用量も低減できる。

2.2 粉砕分級法による実施例

(1) MLCC 用 Ni 粒子の分散・分級処理

ペースト塗布により幾重もの薄膜層を形成させる積 層セラミックスコンデンサでは,原料粉体をいかに微細 化するかが多層化(高機能化)のポイントとなる。Ni 微 粒子の製法は,湿式の化学反応を用いたものや乾式の CVD 法があり,製法によって粉砕分級の目的が変わっ てくるが,大きく以下の2つに分けられる。

- 1) 1次粒子では目標粒径を得ているが、回収後に凝集 体となってしまったため、解砕しながらの分級処理 で凝集粒子を除去したい。
- 2) 実際に存在する粗大粒子を分級で除去したい。

前者には閉回路粉砕分級が適しており,機内付着を 除けばほぼ 100%の製品が回収できる。後者は分級処 理あるいは開回路粉砕分級で粗粉を除去したものを製品 として回収する。図4にコンデンサの電極層に用いら れているニッケル粉の粉砕 (解砕)・分級例を示す。ニッ ケルは比重が大きく,遠心力を大きくすることができる ため,サブミクロン分級が可能となる。レーザー回折式 の粒度分布測定器の測定で平均径 0.33 μm,最大径 1.38 μm の分級粉を製造することができている⁴⁾。

(2) MLCC 用 BaTiO₃ 粒子の分散処理

積層セラミックスコンデンサの薄膜層の用途で多く 使用される BaTiO₃ 粉末は、レーザー回折式の粒度分布 測定結果では目標粒径が得られているものの(平均粒径 0.43 μm,最大粒子径 1.64 μm),実際には数百 ppm の微量の凝集体が存在していることがある。このような 微量の凝集体を除去するのに気流式粉砕機で解砕処理を 行った例があり、その結果を表1に示す。凝集体の有 無の判定は、水中に粉体を超音波で分散させた後に篩を 通過させて、その篩上の重量割合を測定する方法(水篩 評価法)を用いた。2 回の解砕で+ 20 μm が 10ppm 以

図4 Ni粒子の粉砕分級操作による粗粉成分除去

粉砕(解砕)	粉砕圧力	供給量	粉砕粒度	水篩 篩上割合
回数	(MPa)	(kg/h)	(レーザー回折式)	(+20 µ m、 ppm)
0 (粉砕前)	—	—	-1.64μ m、100%	127
1	0.7	4.0	-1.38μ m, 100%	26
2	\uparrow	\uparrow	-1.16μ m, 100%	7
3	\uparrow	\uparrow	-1.16μ m, 100%	2
4	↑ (\uparrow	-1.16μ m, 100%	0

表1 気流式粉砕機によるBaTiO₃粉末凝集体の解砕効果

図5 Cu粒子の粉砕分級操作による粗粉成分除去

下となり、4回で0となった。

(3) MLCC 用 Cu 粒子の分散・分級処理

外部電極用途で多用されている銅粉も微粒子化によ る品質向上が望まれている。また,内部電極用途として も近年,環境問題や安全性の面から銅粉を使用する方向 に向かっている。銅粉はシングルミクロンからサブミク ロンの粒径になると,分級処理時に湿度の影響を大きく 受け,特に湿度の高い夏場には酸化により品質劣化の問 題が発生する。それを回避するために不活性ガス循環式 の分級システムを採用して処理を行っている。図5に分 級結果を示す。レーザー回折法の粒度測定器で測定した 平均径 1.0 μm,最大径 4 μmの原料から平均径 0.7 μm, 最大径 1.8 μmの粒子を 85%程度の高い回収率で得て いる。電子材料用途の銀粒子についても同様の好結果が 得られている。

(4) その他の電子材料用微粒子の製造例

① 球形プラスチック粉体

光学・電子部品用途の球形プラスチック粉末の分級 では,粗大粒子を効率的に分級除去することにより,光 学フィルムシートの高性能化を図っている。また,より 高機能な用途として粗粉・微粉を除去して非常にシャー プな粒径を作ることも行れている。高精度な粒度分布の 粉体を作るためには,0.1 μm 刻みの分級点の設定・維 持が重要となってくる。

② はんだ粉

プリント基板用のはんだ粉は、粒子表面が傷つきや すく、酸化、自重による滞留など、分級操作には配慮す べき課題が多く存在する。当社の分級システムでは、粒 子に傷をつけないために装置内部の材質を最適化し、酸 化防止には不活性雰囲気システムを採用することによっ て、粒子径がそろっており、傷や酸化のない粒子を得る ことができる。

3 高周波熱プラズマ法による MLCC 用 材料の製造

放電現象を利用するプラズマプロセシングは,先端 技術を代表する電子デバイスプロセスの中核技術である ばかりでなく,超微粒子の合成,機能性薄膜の作製,表 面処理,材料加工,燃焼,廃棄物処理など,幅広い分野

MLCCの薄膜多層化に向けた誘電体・電極の材料調整と塗布・解析

に応用されている。これらプラズマプロセシングの中で も、熱プラズマを利用するプロセスは、プラズマ全体が 高温で熱容量が大きいという特徴を有しているため、被 加熱物をすばやく加熱でき、超微粒子の合成、高融点材 料の溶融および球状化、廃棄物の処理などを工業的規模 で行えるという利点がある。

熱プラズマの発生法は,直流アーク放電,高周波誘 導結合型,両者を併せたハイブリッド型などのタイプ に分類されるが,当社では高周波誘導結合型を用いてい る。高周波誘導結合型熱プラズマは無電極状態で発生し ているため,電極間のアーク放電を利用する直流プラズ マで懸念されるタングステンや銅など電極材料のコンタ ミネーションの混入を回避でき,材料合成の分野で問題 なく利用できる。熱分解法や沈殿法などの化学的方法と 比べても,製造されるナノ粒子の純度を高くすることが できる⁴。

3.1 高周波熱プラズマ法による微粒子製造

図6 高周波熱プラズマ装置

微粒子製造用高周波熱プラズマ装置の概要を図6に 示す。本装置は高周波電源,プラズマトーチ,チャンバー および製品回収フィルターから構成されている。原料粉 体は,キャリアガスにより気流搬送され,原料供給プロー ブを通ってプラズマトーチ内に供給される。そして,高 温のプラズマ炎中に投入されると瞬時に蒸発し,その後 急冷されてナノ粒子として生成する。高周波熱プラズマ による炎であるため,不純物の発生がなく,生成するナ ノ粒子は純度が高く,乾式製造であるため分散性の良い 粉末となる。また,原料粉体を蒸発させるのではなく, 溶融にとどめることによって,粒子を球形化することも 可能である。さらに,適切な条件を設定することで複合 粒子を生成することもできる⁵⁾。

3.2 高周波熱プラズマ法による実施例

(1) ナノ粒子製造

代表的なナノ粒子の製造例を表2に示す。各種酸化物のナノ粒子化,金属ナノ粒子,複数元素が混在した複合化ナノ粒子など幅広くユーザーのニーズに合わせた粒子製造を受託製造している。また,図7に当社にて製造実績のある元素を示す。

材料	平均粒子径	粒子形状	結晶系
	(BET 法)	(SEM)	(X 線回折)
Y_2O_3	15 nm	球状	単斜晶
CeO_2	5 nm	角状	立方晶
MgO	10 nm	球状	立方晶
$\rm ZrO_2$	8 nm	球状	正方晶
Ag	40 nm	球状	立方晶
Cu	30 nm	球状	立方晶

表2 主なナノ粒子の製造例

(2) 球形化処理

熱プラズマ処理により,異形粒子を球状化すること ができる。図8に作製したチタン酸バリウム球状微粒 子のSEM像と粒度分布を示す。図8より,作製した球 状微粒子は原料粒子より粒度分布が広く,粒子径もやや 大きくなっているものの,目標である1µmレベルの粒 子となっていることが分かる。また,球状化により流動 性が向上したことが確認されている⁶⁰。

4 おわりに

本稿では,粉砕分級および高周波熱プラズマを用い た微粒子製造技術を取り上げ,MLCC用材料の製造の観 点から簡単に紹介した。これらの機器は,最先端の電 子材料を製造する上で多くの分野で使用されており,各 種部材の高品質化・高機能化のニーズに応えている。し かしながら,扱う粉体が最先端技術に使われるものばか りであり,要求仕様も年々厳しくなっている。我々は長 年積み重ねてきた技術を基盤にして更なる技術開発を行 い,今後も新しい電子材料創製に貢献できるよう努力し ていく所存である。

参考文献

- 1)秋山聡 低エネルギー粉砕ができる「ブレードミル」 化学装置 5 月号 (2002) pp.123-125
- 小澤和三 気流式粉砕機の高機能化に向けて 化学装置 5月号
 (2004) pp.67-70
- 3)山田幸良 村田博 篠田栄司 井伊谷剛一 リングノズルジェット乾式粉体分散器の性能 化学工学論文集 vol.20 No.3 (1994) pp.352-359
- 4)飯田英男 濱田美明 微粒子制御技術 粉体と工業, vol38, No.2 (2006), pp.67-71
- 5)藤井隆司 熱プラズマによる複合微粒子の合成 Journal of Plasma and Fusion Research Vol.76 No.8 (2000) pp.738-741
- 6) 湯蓋一博 中村圭太郎 酒井義文 藤井隆司 今井一貴 Materials Integration Vol.19 No.12 (2006) pp.10-13